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Abstract

We introduce a program aimed to building differential geometric analogues for problems
arising from the theory of complex networks. We study the propagation of influences on
manifolds assuming that at each point only a finite number of propagation velocities are
allowed. This leads to the computation of the volume of the moduli spaces of directed paths.
The proposed settings provide a fertile ground for research with potential applications in
geometry, mathematical physics, differential equations, and combinatorics. The interaction
between differential geometry and complex networks is a new and promising field of study.
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1 Introduction

Our aim in this work is to lay down the foundations for the study of the propagation of influences

on directed manifolds. Our object of study can be approached from quite different viewpoints

as indicated in the following, non-exhaustive, diagram:

Ind. Inf. on Graphs

�����
��

��
��

��
��

��
��

�

Geometric Control

������
��
��
��
��
��
��
��
��

Indirect Influences on Directed Manifolds

Feyman Integrals

����������������������

Directed Spaces

����������������������

Our departure point is the theory of indirect influences for weighted directed graphs, which

has gradually emerged thanks to the efforts of several authors – among them Brin, Chung,

Estrada, Godet, Hatano, Katz, Page, Motwani, and Winograd. Although the history of the

subject is yet to be written, we regard the introduction of the Katz’s index [14] as an early

modern approach to the problem of understanding the propagation of influences in complex

networks. Fundamental developments in the field came with the introduction of the MICMAC

[11], PageRank [3], Communicability [10], and Heat Kernel [6] methods. A further method,

called the PWP method, for computing the propagation of influences on networks was pro-

posed in 2009 by the second author [7], which proceeds as follows. Assume as given a network
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(weighted directed graph) represented by its adjacency matrix D, also called the matrix of

direct influences. Then one defines the matrix T = T (D) of indirect influences, whose entry

Tij measures the weight of the indirect influences exerted by vertex j on vertex i. The matrix

T is computed using the expression: T = 1
eλ−1

∑∞
n=1D

n λn

n! , where λ is a positive real pa-

rameter: indirect influences arise from the sum of weights of concatenations of direct influences;

the weight of a concatenation of length n comes from the product of n entries of D and the

factor λn

n! which ensures convergency by attaching a rapidly decreasing weight to longer chains

of direct influences. The PWP method has been applied to analyse educational programs, and

to study indirect influences in international trade [8]. The stability of the method with respect

to changes in D and λ is studied in [9].

We regard a differential manifold provided with a tuple of vector fields on it – we call such

an object a directed manifold – as being a smooth analogue of a directed graph with numbered

outgoing edges attached to each vertex. Armed with this intuition we pose the question: Is

there an extension of the theory of indirect influences from the discrete to the smooth settings?

We argue that the answer is in the affirmative, and that such an extension both interplays with

several notions already studied in the literature, e.g. control theory [1, 19], Feynman integrals,

and directed topological spaces [12], and also demands the introduction of new ideas.

The background upon which we develop our constructions is the category of directed mani-

folds, see Section 2, a convenient category for studying geometric control theory. Our construc-

tions bring about a new set of problems to geometric control theory, namely, the problem of

computing integrals over the moduli spaces of directed paths. We remark that strong tangency

conditions are imposed in order to insure that the moduli spaces of directed paths – also called

the spaces of indirect influences – split naturally into infinitely many finite dimensional pieces,

each coming with a natural measure. Thus we have a notion of integration over each piece,

which we extend additively to the whole moduli space, leaving the convergency of these sums

to a case by case analysis. In our examples we do obtain convergent sums. These ideas are

developed in Section 3, where we also introduce the wave of influences u(p, t) which com-

putes the total influence received by a point p in time t, i.e. u(p, t) computes the volume of

the moduli space of directed paths starting at an arbitrary point and ending up at p in time t.

Our notion of directed manifolds is strongly related to the notion of directed spaces intro-

duced by Grandis [12], the former yielding a smooth analogue of the latter. In Section 4 we

discuss invariant properties for directed manifolds and for the moduli spaces of directed paths

on them. In Section 5 we study the moduli spaces of directed paths on the product and quotient

of directed manifolds. In Section 6 we study the moduli spaces of directed paths arising from

constant vector fields on affine spaces, which gives rise to fruitful constructions in combinatorics
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95Indirect influences on directed manifolds

and probability theory [4, 20]. We left for future research the problem of generalizing our main

constructions to higher dimensions, this could eventually lead to interactions with string theory.

Notation. For n ∈ N, we set [n] = {1, ..., n}, [0, n] = {0, ..., n}, and let P[n] be the

set of subsets of [n]. The amalgamated sum of closed subintervals of the real line R is given

by [a, b]
�

b,c[c, d] = [a, b+ d− c]. We let δab be the Kronecker’s delta function. We write

M � N to indicate that M and N are homeomorphic topological spaces.

2 Basic Definitions

We let diman be the category of directed manifolds. A directed manifold is a tuple (M,v1, ..., vk)

where M is a smooth manifold, and v1, ..., vk are smooth vector fields on M , with k ≥ 1.

A morphism (f, α) : (M,v1, ..., vk) −→ (N,w1, ..., wl) in diman is a pair (f, α) where

f : M −→ N is a smooth map, α : [k] −→ [l] is a map, and the following identity holds

df(vi) = wα(i), for i ∈ [k]. Let (g, β) : (N,w1, ..., wl) −→ (K, z1, ..., zr) be another morphism.

The composition morphism (g, β) ◦ (f, α) is given by (g, β) ◦ (f, α) = (g ◦ f, β ◦ α). Indeed

d(gf)(vi) = dg(df(vi)) = dg(wα(i)) = zβ(α(i)) = zβ◦α(i).

One can think of a directed manifold (M,v1, ..., vk) as being a smooth analogue of a finite

directed graph with up to k outgoing numbered edges at each vertex. Points in the manifold M

are thought as vertices in the smooth graph. The tangent vectors vi(p) ∈ TpM are thought as

infinitesimal edges starting at p. The out-degree of a vertex p ∈ M is the number of non-zero

infinitesimal edges starting at p, i.e. the cardinality of the set {i ∈ [k] | vi(p) �= 0}. An actual

edge from p to q is a smooth path ϕ : [0, t] −→ M with ϕ(0) = p, ϕ(t) = q, and such

that the tangent vector at each point of ϕ is an infinitesimal edge, i.e. ϕ̇ = vi(ϕ) for some

i ∈ [k], or more explicitly ϕ̇(s) = vi(ϕ(s)) for all s ∈ [0, t]. We say that p exerts a direct

influence, in time t > 0, on the vertex q through the path ϕ. Note that ϕ is determined by

p and the index i of vector field vi, thus we are entitled to use the notation ϕ(s) = ϕi(p, s),

where ϕi is the flow generated by vi.

Definition 1. Let (M,v1, ..., vk) be a directed manifold and p, q ∈ M. The set of one-

direction paths, also called direct influences, Dp,q(t) from p to q developed in time t > 0

is given by

Dp,q(t) = {i ∈ [k] | ϕi(p, t) = q}, and Dp,q(0) =

⎧
⎨
⎩

{p} if p = q,

∅ otherwise.

Next we introduce the notion of indirect influences which arise from the concatenation of

direct influences. Our focus is on finding a convenient parametrization for the space of all such

concatenations.

3



96 L. Cano and R. Diaz

Definition 2. Let (M,v1, ..., vk) be a directed manifold and p, q ∈ M. A directed path, also

called a indirect influence, from p to q displayed in time t > 0 through n ≥ 0 changes of

directions is given by a pair (c, s) with the following properties:

• c = (c0, c1, ..., cn) is a (n+1)-tuple with ci ∈ [k] and such that ci �= ci+1. We say that

c defines the pattern (of directions) of the directed path (c, s). We let D(n, k) be the

set of all such tuples and l(c) = n+1 be the length of c. There are k(k− 1)n different

patterns in D(n, k). We often regard a pattern c as a map c : [0, n] −→ [k].

• s = (s0, ..., sn) is a (n + 1)-tuple with si ∈ R≥0 and such that s0 + · · · + sn = t. We

say that s defines the time distribution of the directed path (c, s), and let Δt
n be the

n-simplex of all such tuples.

• The pair (c, s) determines a (n + 2)-tuple of points (p0, . . . , pn+1) ∈ Mn+2 given by

p0 = p and pi = ϕci−1(pi−1, si−1) for 1 ≤ i ≤ n + 1, where ϕci−1 is the flow generated

by the vector field vci−1 . We denote the last point pn+1 by ϕc(p, s).

• The pair (c, s) must be such that ϕc(p, s) = q.

• Directed paths in time t = 0 are the same as one-direction paths in time t = 0.

The geometric meaning of directed paths is made clear through the following construction.

A pair (c, s) as above determines a piece-wise smooth path

ϕc,s : [0, s0 + · · ·+ sn] � [0, s0]
⊔
s0,0

· · ·
⊔

sn−1,0

[0, sn] −→ M

such that the restriction of ϕc,s to the interval [0, si], for 0 ≤ i ≤ n, is given by ϕc,s|[0,si](r) =

ϕci(pi, r) for all r ∈ [0, si]. Indirect influences are exerted through such directed paths. Figure

1 shows the directed path associated to a pair (c0, c1, c2, c3, s0, s1, s2, s3).

Figure 1. Directed path associated to a pair (c0, c1, c2, c3, s0, s1, s2, s3).
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We assume that the flows generated by the vector fields vj are globally defined by smooth

maps ϕj( , ) : M × R −→ M yielding a one-parameter group of diffeomorphisms of M. A

pattern c ∈ D(n, k) defines an iterated flow given by the smooth map ϕc : M×R
n+1 −→ M de-

fined by recursion on the length of c as ϕc(p, s0, ..., sn) = ϕcn(ϕc|[0,n−1]
(p, s0, ..., sn−1), sn). Fix-

ing a time distribution (s0, ..., sn) we obtain the diffeomorphism ϕc( , s0, ..., sn) : M −→ M.

These construction justify the notation ϕc(p, s) for the point pn+1(c, s) introduced in Defi-

nition 4.

We regard the n-simplex Δt
n introduced in Definition 4 as a smooth manifold with corners.

There are at least three different approaches to differential geometry on manifolds with corners.

First we can apply differential geometric notions on the interior of Δt
n. Second it is possible to

introduce differential geometric notions on Δt
n by considering objects that are smooth on an

open neighborhood of Δt
n in R

n+1. A third and more intrinsic approach for doing differential

geometry on Δt
n relies on deeper results in the theory of manifolds with corners. Although this

more comprehensive approach is certainly desirable, for simplicity, we will not further consider

it.

Proposition 3. For a pattern c ∈ D(n, k), the map ϕc : M × Δt
n −→ M sending a pair

(p, s) ∈ M ×Δt
n to the point ϕc(p, s) ∈ M is a smooth map and a diffeomorphism for a fixed

time distribution s ∈ Δt
n.

Next we introduce the main objects of study in this work, namely, the moduli spaces of

directed paths on directed manifolds, also called the spaces of indirect influences.

Definition 4. Let (M,v1, ..., vk) be a directed manifold and p, q ∈ M. The moduli space

Γp,q(t) of directed paths from p to q developed in time t > 0 is given by Γp,q(t) =�
(c, s)

��� ϕc(p, s) = q
�

=

∞�
n=0

�
c∈D(n,k)

{s ∈ Δt
n | ϕc(p, s) = q} =

∞�
n=0

�
c∈D(n,k)

Γc
p,q(t).

We also set

Γp,q(0) = Γ∅
p,q(0) =

⎧
⎨
⎩

{p} if p = q,

∅ otherwise,

Figure 2 shows a schematic picture of a component Γc
p,q(t) of the moduli space of indirect

influences.
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ϕc(p, s) = q

Figure 2. Moduli space of directed paths Γc
p,q(t).

Theorem 5. The moduli spaces of directed paths on a directed manifold form a topological

category.

Proof. Given a directed manifold (M,v1, ..., vk) we let Γ = Γ(M,v1, ..., vk) be the category

of directed paths on M. The objects of Γ are the points of M. Given p, q ∈ M, the

space of morphisms in Γ from p to q is given by Γp,q =
∐

n∈N

∐
c∈D(n,k) Γ

c
p,q where

Γc
p,q = {(s, t) ∈ R

n+2
≥0 | s ∈ Δt

n, ϕc(p, s) = q}. In order to define continuous composition

maps ◦ : Γp,q × Γq,r −→ Γp,r, it is enough to define componentwise composition maps

◦ : Γc
p,q × Γd

q,r −→ Γc∗d
p,r for given patterns c and d with n = l(c) and m = l(d). We

consider two cases:

• If cn �= d0, then c ∗ d = (c, d) and (s0, ..., sn) ◦ (u0, ..., um) = (s0, ..., sn, u0, ..., um).

• If cn = d0, then c ∗ d = (c0, ..., cn) ∗ (d0, ..., dm) = (c0, ..., cn, d1, ..., dm) and

(s0, ..., sn) ◦ (u0, ..., um) = (s0, ..., sn + u0, ..., um).

These compositions are well-defined continuous maps satisfying the associative property. The

unique t = 0 directed path from p ∈ M to itself gives the identity morphism for each object

p ∈ Γ.

Remark 6. The moduli spaces Γp,q(t) can be extended from points to arbitrary subsets of

M as follows. Given A,B ⊆ M we define the moduli space of directed paths from A to B

as ΓA,B(t) =
{
(c, s)

∣∣∣ p ∈ A, ϕc(p, s) ∈ B
}

=
∐∞

n=0

∐
c∈D(n,k){s ∈ Δt

n | p ∈ A, ϕc(p, s) ∈
B} =

∐∞
n=0

∐
c∈D(n,k) Γ

c
A,B(t). Looking at embedded oriented submanifolds of M and

following techniques from Chas and Sullivan’s string topology [5], this construction gives rise

to a transversal category.

We introduce a few distinguished subsets of M useful for understanding the propa-

gation of influences on M. These sets are usually called the reachable sets in geometric

control theory, and are natural generalizations of the corresponding graph theoretical no-

tions. They also play a prominent role in general relativity [17]. For A ⊆ M we set: 1)

ΓA(t) = {q ∈ M | ΓA,q(t) �= ∅} is the set of points in M influenced by A in time t. 2)

6
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ΓA,≤(t) = {q ∈ M | there is 0 ≤ s ≤ t, such that ΓA,q(s) �= ∅} is the set of points in M

influenced by A in time less or equal to t. 3) ΓA = {q ∈ M | ΓA,q(t) �= ∅ for some t ≥ 0} is

the set of points in M that are influenced by A. 4) Γ−
A(t) = {q ∈ M | Γq,A(t) �= ∅} is the set

of points in M that influence A in time t, i.e. the set of points on which A depends on time

t. 5) Γ−
A,≤(t) = {q ∈ M | there is 0 ≤ s ≤ t, such that Γq,A(s) �= ∅} is the set of points in M

that influence A in time less or equal to t. 6) Γ−
A = {q ∈ M | Γq,A(t) �= ∅ for some t ≥ 0}

is the set of points in M that influence A. 7) FA(t) = ∂ΓA,≤(t) and F−
A(t) = ∂Γ−

A,≤(t) are

called, respectively, the front of influence and the front of dependence of A in time t.

Note that a directed manifold M is naturally a pre-poset by setting p ≤ q if and only if

q ∈ Γp. The associated poset is the quotient space M∼, where the equivalence relation ∼
on M is given by p ∼ q if and only if q ∈ Γp and p ∈ Γq. The space M∼ tell us how

M splits into components of co-influences, i.e. the path connected components of M through

directed paths.

3 Measuring the Moduli Spaces of Directed Paths

In order to measure directed paths on M we assume from now on that an orientation on M has

been chosen. To gauge the amount of indirect influences exerted, in time t, by a point p ∈ M on

a point q ∈ M we need to define measures on the moduli spaces Γp,q(t) of directed paths. From

Definition 4 we see that Γp,q(t) is a disjoint union of pieces, one for each pattern c ∈ D(n, k), of

the form Γc
p,q(t) = {s ∈ Δt

n | ϕc(p, s) = q}. So, our problem reduces to imposing measures on

the pieces Γc
p,q(t). The n-simplex Δt

n is a smooth manifold with corners, and comes equipped

with a Riemannian metric and its associated volume form. Indeed using Cartesian coordinates

li = s0 + · · · + si−1, we have that Δt
n =

{
(l1, ..., ln) ∈ R

n | 0 ≤ l1 ≤ l2 ≤ ...... ≤ ln ≤ t
}
.

Thus Δt
n ⊆ R

n inherits a Riemannian metric, an orientation, and the corresponding volume

form dl1 ∧ · · · ∧ dln. With this measure vol(Δt
n) =

tn

n! .

Definition 7. A directed manifold (M,v1, ..., vk) has smooth spaces of directed paths if for

any pattern c ∈ D(n, k) and points p, q ∈ M the space of indirect influences Γc
p,q(t) is a

smooth embedded sub-manifold of Δt
n.

For our next result we use the implicit function theorem for manifolds [13, 21]. Let f :

N −→ M be a smooth map between differential manifolds and fix q ∈ M. If for each

p ∈ f−1(q) the linear map dpf : TpN −→ TqM has maximal rank, that is rank(dpf) =

min{dim(N),dim(M)}, then f−1(q) is a smooth sub-manifold of N. If rank(dpf) = dim(N),

then dpf is injective, f is an immersion, and f−1(q) is a set of isolated points. If

rank(dpf) = dim(M), then dpf is surjective, f is a submersion, and f−1(q) is a sub-

manifold of N of dimension dim(N)− dim(M).
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Theorem 8. Let (M,v1, ..., vk) be a directed manifold. Fix a pattern c ∈ D(n, k) with

n ≥ 1, and a point p ∈ M. If for any (s0, ..., sn) in the open part of Γp,q(t) there are

min(n,dim(M)) linearly independent vectors among the vectors given for i ∈ [0, n − 1] by

dMϕ(ci+1,...,cn)

∣∣∣
(si+1,...,sn)

[
vci(ϕc0,...,ci(s0, ..., si))

] − vcn(ϕc(s0, ..., sn)) ∈ Tϕc(p,s0,...,sn),

then Γc
p,q(t) is a smooth sub-manifold of Δt

n.

Proof. Fix c ∈ D(n, k) with n ≥ 1, and consider ϕc : M × R
n+1 −→ M the iterated

flow associated to c. The differential of ϕc naturally split as dϕc = dMϕc + dR
n+1

ϕc.

Consider the map φ : Δt
n −→ M given by φ(s) = φ(s0, ..., sn−1) = ϕc(p, s0, ..., sn−1, t − s0 −

· · · − sn−1), where we are using the identification Δt
n =

{
s = (s0, ..., sn−1) ∈ R

n
≥0

∣∣∣∣ |s| =
s0 + · · · + sn−1 ≤ t

}
. In order to guarantee that Γc

p,q(t) = φ−1(p) is a smooth sub-manifold

of Δt
n we impose the condition that dsφ has maximal rank for s ∈ φ−1(p). Next we

compute for i ∈ [0, n − 1] the vectors ∂φ
∂si

(s) = dsφ(
∂
∂si

) ∈ Tφ(s)M. Using the identity
∂

∂sn
(ϕc0,··· ,cn)(p, s0, · · · , sn) = vcn(ϕc1,··· ,cn(p, s0, · · · , sn)), one can show that ∂φ

∂si
(s) is given

by dMϕci+1,...,cn

∣∣∣
(si+1,...,sn−1,sn)

[
vci(ϕc0,...,ci(s0, ..., si))

] − vcn(ϕc0,...,cn(s0, ..., sn)), where we

recall that sn = t − |s|, dMϕci+1,...,cn = dϕcn( , t − |s|) ◦ · · · ◦ dMϕci+1( , si+1), and

ϕc0,...,ci(s0, ..., si) = ϕci [ϕc0,...,ci−1(s0, ..., si−1), si] for i ≥ 1. Thus the rank of dsφ is maximal

at each point s ∈ φ−1(q) if and only if there are exactly min(n,dim(M)) linearly independent

vectors among the vectors ∂φ
∂si

(s) given by the expression above. We have shown the desired

result.

Corollary 9. Under the hypothesis of Theorem 8, the interior of the moduli space Γc
p,q(t) is

an oriented Riemannian sub-manifold of Δt
n.

Proof. We use oriented differential intersection theory as developed by Guillemin [13]. Since

Γc
p,q(t) is a smooth sub-manifold of Δt

n it acquires by restriction a Riemannian metric. The

orientation on Γc
p,q(t) arises as follows. For s ∈ Γc

p,q(t) write TsΔ
t
n � NsΓ

c
p,q(t) ⊕ TsΓ

c
p,q(t),

where NsΓ
c
p,q(t) � TsΔ

t
n/TsΓ

c
p,q(t) is the normal bundle of Γc

p,q(t). Note that dsφ(TsΔ
t
n) =

Tφ(s)M and thus dsφ : NsΓ
c
p,q(t) −→ Tφ(s)M is an isomorphism. Since TsΔ

t
n is oriented,

and NsΓ
c
p,q(t) acquires an orientation from the isomorphism above, then TsΓ

c
p,q(t) naturally

acquires an orientation.

For a directed manifold with a smooth moduli space of directed paths each piece Γc
p,q(t) ⊆

Δt
n acquires from Δt

n a Riemannian metric. If in addition we assume that each piece Γc
p,q(t)

is given an orientation, then Γc
p,q(t) acquires a volume form denoted by dlc. As we have just

shown this is the situation arising from the conditions of Theorem 8. We are ready to highlight

8
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a few functions on the moduli spaces of directed paths, for a fix a time t > 0, that one would

like to integrate against these measures.

1. Volume of Moduli Space of Directed Paths. Each component Γc
p,q(t) of the space

of indirect influences is compact and thus of bounded volume. We define the volume or total

measure of Γp,q(t), leaving convergency issues to be discussed on a case by case basis, as

follows:

vol(Γp,q(t)) =

∫

Γp,q(t)
1dl =

∞∑
n=1

∑
c∈D(n,k)

∫

Γc
p,q(t)

1 dlc =

∞∑
n=1

∑
c∈C(n,k)

vol(Γc
p,q(t)).

2. Functions on directed paths coming from differential 1-forms on M . Let A be a

differential 1-form on M . We formally write

∫

Γp,q(t)
Â dl =

∞∑
n=1

∑
c∈D(n,k)

∫

Γc
p,q(t)

Â dlc,

where the map Â : Γc
p,q(t) −→ R is given by A(c, s) =

∫ t
0 ϕ

∗
c,sA =

∑l(c)
i=0

∫ si
0 ϕc,s|∗[0,si]A, with

ϕc,s : [0, s0 + · · · + sn] −→ M the directed path associated to (c, s) ∈ Γp,q(t).

3. Functions on directed paths from Riemannian metrics on M . Let g be a Riemannian

metric on M . We formally write

∫

Γp,q(t)
e−lg dl =

∞∑
n=1

∑
c∈D(n,k)

∫

Γc
p,q(t)

e−lg dlc,

where e−lg : Γc
p,q(t) −→ R is the map given by �−lg(c, s) = e−lg(ϕc,s) and lg(ϕc,s) is the

length of the path ϕc,s, i.e.:

lg(ϕc,s) =

l(c)∑
i=0

lg(ϕc,s|[0,si]) =

l(c)∑
i=0

∫ si

0
g
(
vci(ϕci(pi, u)) , vci(ϕci(pi, u))

)
du.

4. Functions on direct paths from functions on M . Given a smooth map f : M −→ R

we formally write

∫

Γp,q(t)
f̂ dl =

∞∑
n=1

∑
c∈D(n,k)

∫

Γc
p,q(t)

f(p0) · · · f(pn) dlc

with p0 = p and pi+1 = ϕci(pi, si) for 0 ≤ i ≤ n.

5. Functions on directed paths from Lagrangian functions on TM . Let L : TM −→ R

be a Lagrangian map. In the applications L is usually built from a Riemannian metric g on

9
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M and a potential map U : M −→ R as L(p, v) = g(v, v) − U(p). Given a Lagrangian

L we consider the following analogue of the Feynman integrals:

∫

Γp,q(t)
e

i
�
S dl =

∞∑
n=1

∑
c∈D(n,k)

∫

Γc
p,q(t)

e
i
�
S dlc,

where we set e
i
�
S(c, s) = e

i
�
S(c,s), and the action map S is given by

S(c, s) =

∫ t

0
L(ϕc,s(u), ϕ̇c,s(u)) du =

l(c)∑
i=0

∫ si

0
L(ϕc,s|[0,si](u), ϕ̇c,s|[0,si](u)) du.

We have shown how to construct and integrate functions on the moduli spaces of directed

paths on directed manifolds, let us pick one such a function and call it h. Integrating over

the moduli spaces of directed paths we obtain the kernel for the propagation of influences

k : M ×M × R −→ R which is given by k(p, q, t) =
∫
Γp,q(t)

h dl.

Definition 10. Let (M,v1, ..., vk) be an oriented directed manifold with smooth moduli space

of directed paths. M is given a Riemannian metric, and thus it acquires a volume form. Let

f : M −→ R be a map representing the density of influences originated at time t = 0. Let g

be a map on directed paths, and consider its associated kernel of influences k = kg. The wave

of influences u : M ×R≥0 −→ R is the map given by

u(q, t) =

∫

p∈Γ−
q (t)

k(p, q, t)f(p) dp,

where we assume that Γ−
q (t) is a compact oriented smooth sub-manifold of M ; thus it acquires

by restriction a Riemannian metric, and comes with a volume form dp.

4 Invariance, Involution, and Limit Properties

Let (M,v1, ..., vk) be a directed manifold and f : M −→ N be a diffeomorphism. Then we

obtain the directed manifold (N, f∗v1, ..., f∗vk) where the push-forward vector fields f∗vi

are given for q ∈ N by f∗vi(q) = dpf(vi(p)), with p = f−1(q). With this notation we have

the following result.

Theorem 11. Let (M,v1, ..., vk) be a directed manifold and f : M −→ N be a diffeomor-

phism. For p, q ∈ M the identity map gives a natural homeomorphism ΓM
p,q(t) � ΓN

f(p),f(q)(t).

Moreover, if (M,v1, ..., vk) has a smooth moduli space of directed paths, M and N are oriented

manifolds, and f is an orientation preserving diffeomorphism, then the identification above is

an identity between Riemannian manifolds, and thus vol(ΓM
p,q(t)) = vol(ΓN

f(p),f(q)(t)).

Proof. We show that s ∈ ΓM,c
p,q (t) if and only if s ∈ ΓN,c

f(p),f(q)(t). By construction we have

that f(ϕvi(p, t)) = ϕf∗(vi)(f(p), t), and thus by induction on the length of c we have that

10



103Indirect influences on directed manifolds

f(ϕv,c,s(p, t)) = ϕf∗v,c,s(f(p), t). Therefore the equations ϕv,c(p, s) = q and ϕf∗v,c(f(p), s) =

f(q) are equivalent. To show the second statement, note that the identity map ΓM,c
p,q (t) −→

ΓN,c
f(p),f(q)(t) preserves orientation. Indeed since the identity map preserves the splittings

TsΔ
t
n � NsΓ

M,c
p,q (t) ⊕ TsΓ

M,c
p,q (t) and TsΔ

t
n � NsΓ

N,c
f(p),f(q)(t) ⊕ TsΓ

N,c
f(p),f(q)(t), we just

have to show that NsΓ
M,c
p,q (t) and NsΓ

N,c
f(p),f(q)(t) are given compatible orientations. This

follows by construction, see the proof of Theorem 8, as the square

NsΓ
c
p,q(t)

dsφv,c
��

1

��

Tφv,c(s)M

df

��

NsΓ
N,c
f(p),f(q)(t)

dsφf�v,c �� Tφf�v,c(s)
N

is a commutative diagram of orientation preserving isomorphisms, see Corollary 9.

Next result tell us how the moduli spaces of directed paths depend on the ordering on vector

fields.

Proposition 12. Let (M,v) = (M,v1, ..., vk) be a directed manifold and α : [k] −→ [k] be

a permutation. For the directed manifold (M,vα) = (M,vα1, ..., vαk) we have that Γv
p,q(t) �

Γvα
p,q(t). Moreover, if (M,v) is oriented and has a smooth moduli space of directed paths,

then so does (M,vα) and we have that vol(Γv
p,q(t)) = vol(Γvα

p,q(t)).

Proof. Associated to the permutation α we have the map α∗ : Γv
p,q(t) −→ Γvα

p,q(t) given

by α∗(c, s) = (α−1c, s). It follows that α∗ is an homeomorphism as its restriction map

α∗ : Γ
v,c
p,q(t) −→ Γvα,α−1c

p,q (t) is just the identity map and is a well-defined homeomorphism since

ϕvα,α−1c(p, s) = ϕv,αα−1c(p, s) = ϕv,c(p, s) = q. In the case of smooth moduli spaces of directed

paths, the map above is clearly orientation preserving, since it is just the identity map, and we

have a commutative diagram of orientation-preserving isomorphisms

NsΓ
v,c
p,q(t)

dsφv,c
��

1

��

Tφv,c(s)M

1

��

NsΓ
vα,α−1c
p,q (t)

dsφvα,α−1c
�� Tφ

vα,α−1c(s)
M

From Theorem 11 and Proposition 12 we see that the invariant study of directed paths

on a directed oriented manifold M relies on the study, for k ≥ 1, of the quotient spaces

χ(M)k/Diff+(M) × Sk, where χ(M) is the space of vector fields on M, Sk the group of

permutations of [k], and Diff(M)+ is the group of orientation preserving diffeomorphism of

11
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M, i.e. the study of equivalence classes of tuples of vector fields under diffeomorphisms and

permutations. Next we define the direction reversion functor − : diman −→ diman. It sends

a directed manifold (M,v1, ..., vk) to its reversed directed manifold (M,−v1, ...,−vk).

Proposition 13. Let (M,v1, ..., vk) be a directed manifold and (M,−v1, ...,−vk) its re-

versed directed manifold. Given A,B ⊆ M we have canonical homeomorphism Γv,A,B(t) �
Γ−v,B,A(t). Therefore the respective reachable sets are related by Γ−v,A(t) � Γ−

v,A(t), Γ−v,A,≤(t) �
Γ−
v,A,≤(t), Γ−v,A � Γ−

v,A, F−v,A(t) � ∂Γ−
A,≤(t). If (M,v1, ..., vk) is oriented and has a smooth

moduli space of directed paths, then so does (M,−v1, ...,−vk) and the maps above are actually

diffeomorphisms which may or may not preserve orientation.

Proof. We define a map ( ) : Γv,A,B(t) −→ Γ−v,B,A(t) as follows (c, s) = (c0, ..., cn, s0, ..., sn) =

(c, s) = (cn, ..., c0, sn, ..., s0). This map is an homeomorphism since the map ( ) : D(n, k) −→
D(n, k) is bijective, and the map ( ) : Γc

v,A,B(t) −→ Γc
−v,B,A(t) is an homeomorphism as the

equations ϕv,c(p, s) = q and ϕ−v,c(q, s) = p are equivalent.

5 Indirect Influences on Product/Quotient Manifolds

Let (M,v1, ..., vk) and (N,u1, ..., ul) be directed manifolds. The natural isomorphism T (M×
N) � π∗

MTM⊕π∗
NTN, allows us to consider (M×N, v1, ..., vk, u1, ..., ul) as a directed manifold,

where one should more formally write (vi, 0) instead of vi, and (0, uj) instead of uj. Recall

that diman is the category of directed manifolds, and that we are allowing in diman manifolds

with connected components of different dimensions.

Proposition 14. The product defined above gives diman the structure of a monoidal category.

Fix A ⊆ [n]. We say that a map c : A −→ [k] is a pattern if c(i) �= c(i + 1) for all

contiguous elements i, i+ 1 ∈ A. Thus a pattern for the product manifold M ×N is given

by a map c : [n] −→ [k + l] � [k] � [l] such that its restrictions c|c−1[k] : c
−1[k] −→ [k] and

c|c−1[l] : c
−1[l] −→ [l] are patterns on c−1[k] and c−1[l], respectively.

Proposition 15. Let (p1, p2), (q1, q2) ∈ M ×N, and let c : [n] −→ [k] � [l] be a pattern.

We have a canonical homeomorphism ΓM×N, c
(p1,p2),(q1,q2)

� Γ
N, c|

c−1[k]
p1, q1 × Γ

N, c|
c−1[l]

p2, q2 .

Proof. The desired homeomorphism sends s ∈ ΓM×N, c
(p1,p2),(q1,q2)

(t) ⊆ ΓM×N, c
(p1,p2),(q1,q2)

to the pair

(s|c−1[k], s|c−1[l]) ∈ Γ
N, c|

c−1[k]
p1, q1 (a) × Γ

N, c|
c−1[l]

p2, q2 (t− a), where a =
∑

i∈c−1[k]

si.

Next we consider the moduli spaces of directed paths on quotient manifolds. Let M be a

smooth manifold, G a compact Lie group acting freely on M, and assume that the directed

12
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manifold (M,v1, ..., vk) is invariant under the action of G, i.e. dpg(vi) = vi(gp) for all p ∈
M, g ∈ G. Then M/G is a smooth manifold and it comes with a smooth quotient map

pi : M −→ M/G, which induces a surjective map dπ : TM −→ T (M/G), and canoni-

cal isomorphisms dpπ : TpM/Tp(Gp) −→ Tp(M/G). Note also that we have isomorphisms

Tp(M/G) �
(⊕

g∈G TgpM
)
/G. Thus we obtain the directed manifold (M/G, v1, ... , vk)

with vi = dπ(vi).

Theorem 16. Let (M,v1, ..., vk) be a directed manifold, invariant under the action of the

compact Lie group G, and let p, q ∈ M. Then (M/G, v1, ... , vk) with vi = dπ(vi) is a

directed manifold, G acts naturally on ΓM
Gp,Gq

(t), and we have that Γ
M/G
p,q (t) �

(
ΓM
Gp,Gq

(t)
)
/G.

Proof. The result follows from the fact that there areG-equivariant homeomorphisms ΓM
p,Gq(t) −→

Γ
M/G
p,q (t) and ΓM

p,Gq(t) −→
(
ΓM
Gp,Gq(t)

)
/G. As the vector fields vi are G-invariant, the cor-

responding flows ϕi are also G-invariant: ϕi(gp, t) = gϕi(p, t), and therefore ϕc,s(gp, t) =

gϕc,s(p, t) for any pattern and time distribution (c, s). This shows that G acts on ΓM
Gp,Gq(t),

and that ΓM
p,q(t) � ΓM

gp,gq(t) for p, q ∈ M. A pair (c, s) defines a directed path from p

to q in M/G if and only if ϕc(p, s) = q. If the latter equation holds we have that

πϕc(p, s) = ϕc(p, s) = q and thus ϕc(p, s) ∈ Gq. Therefore (c, s) defines a directed path

from p to q if and only if (c, s) defines an indirect influence from p to Gq. So we have

shown that the map ΓM
p,Gq(t) −→ Γ

M/G
p,q (t) is a G-equivariant homeomorphism. Similarly, if

a ∈ Gp, then ϕc(p, s) = q if and only if ϕc(a, s) = ϕc(gp, s) = gϕc(p, s) belongs to Gq. Thus

the map ΓM
p,Gq(t) −→

(
ΓM
Gp,Gq

(t)
)
/G is a G-equivariant homeomorphism.

6 Directed Paths for Constant Vector Fields

As a first and pretty workable example, linking the theory of indirect influences on directed

manifolds with linear programming techniques, we consider constant vector fields on affine

spaces. Fix a directed manifold (Rd, v1, ..., vk) where the vector fields vj =
∑d

j=1 aij
∂
∂xi

, have

constant coefficients aij ∈ R for i ∈ [d], j ∈ [k].

Theorem 17. Consider the directed manifold (Rd, v1, ..., vk). Fix a pattern c ∈ D(n, k) and

points p, q ∈ R
d. The space of directed paths Γc

p,q(t) is the convex polytope given on the

variables s ∈ R
n+1
≥0 by the system of equations: aic(0)s0 + · · · + aic(n)sn = qi−pi, for i ∈ [d],

and s0 + · · · + sn = 1.

Proof. The result follows from the fact that the solutions of the differential equation ṗ = v,

where v is constant are of the form p(t) = a + vt, with initial condition p(0) = a.

Theorem 18. Consider the directed manifold (Rd, v1, ..., vk). For p, q ∈ R
d, the volume of

the space of directed paths Γc
p,q(t) is given by vol(Γc

p,q(t)) = vol(Conv(uI)), where Conv(uI)

is the convex hull of the vectors uI defined by the following conditions:

13
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• I ⊆ [d] is a subset of cardinality n. The entries of uI ∈ R
n+1
≥0 vanish for indexes not in

I.

• For a matrix A we let AI be its restriction to the columns with indexes in I. The set

I must be such that det

(
Ac

1

)

I

�= 0.

• uI is the unique solution of the linear system

(
Ac

1

)

I

uI =

(
q − p
t

)
.

Proof. From Theorem 17 and results from linear programming [16, 22] one have Γc
p,q(t) =

Conv(uI).

6.1 Dimension One

Below we use the following well-known identity involving the classical beta B and gamma Γ

functions:

∫ 1

0
sn(1− s)mds = B(n + 1,m+ 1) =

Γ(n+ 1)Γ(m+ 1)

Γ(n+m+ 2)
=

n!m!

(n+m+ 1)!
.

Theorem 19. Consider the directed manifold (R, d
dx , − d

dx). For x, y ∈ R we have that

vol(Γ0,x(t)) = 0 if |x| > t, vol(Γ0,x(t)) = 1 if |x| = t, and otherwise:

vol(Γ0,x(t)) =

∞∑
n=0

[
2
(t+ x)n(t− x)n

n!2
+ t

(t+ x)n(t− x)n

(n + 1)!n!

]
2−2n.

Furthermore, vol(Γx,0(t)) = vol(Γ0,x(t)) and vol(Γx,y(t)) = vol(Γ0,y−x(t)). The wave of

influences for t > 0 is given by u(x, t) = 4(et − 1).

Proof. Fix x ∈ R and a pattern c ∈ D(n, k). The space of directed paths Γc
0,x(t) is the

polytope given by
∑n

i=0(−1)cisi = x and
∑n

i=0 si = t. Since we have just two vector fields,

a pattern (c0, ..., cn) is determined by its initial value c0. Figure 3 shows the directed path

associated to the tuple (7, 5, 3, 7) ∈ Γ
(1,2,1,2)
(0,−2) .

0 72 5−2

Figure 3: Directed path associated to the tuple (7, 5, 3, 7) ∈ Γ
(1,2,1,2)
(0,−2) .

We distinguish four cases taking into account the initial value c0 and the parity of n. Consider

the pattern (1, 2, ..., 1, 2) of length 2n, for n ≥ 1. Then Γc
0,x(t) is the polytope given by∑2n−1

i=0 (−1)isi = x and
∑2n−1

i=0 si = t. Setting
∑n−1

i=0 s2i = a and
∑n−1

i=0 s2i+1 = b, the

14
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previous equations become a− b = x and a+ b = t, with solutions a = t+x
2 and b = t−x

2 .

By definition a, b ≥ 0, thus we must have |x| < t in order that Γc
0,x(t) �= ∅. For |x| < t, we

have that Γc
0,x(t) = Δn−1(

t+x
2 )×Δn−1(

t−x
2 ), and therefore vol(Γc

0,x(t)) = (t+x)n−1(t−x)n−1

22n−2(n−1)!2
.

For the pattern (1, 2, ..., 1, 2, 1) of length 2n + 1, with n ≥ 1, we get

vol(Γc
0,x(t)) = vol

[
Δn(

t+ x

2
) × Δn−1(

t− x

2
)
]

=
(t+ x)n(t− x)n−1

22n−1n!(n− 1)!
.

The pattern c = (2, 1, · · · , 2, 1) of length 2n, with n ≥ 1, leads to

vol(Γc
0,x(t)) = vol

[
Δn−1(

t− x

2
) × Δn−1(

t+ x

2
)
]

=
(t+ x)n−1(t− x)n−1

22n−2(n− 1)!2
.

For the pattern c = (2, 1, · · · , 2, 1, 2) of length 2n+ 1, with n ≥ 1, we get that

vol(Γc
0,x(t)) = vol

[
Δn(

t− x

2
) × Δn−1(

t+ x

2
)
]

=
(t+ x)n−1(t− x)n

22n−1(n− 1)!n!
.

Therefore vol(Γ0,x(t)) is for |x| < t given by:

∞∑
n=1

[
4
(t+ x)n−1(t− x)n−1

(n− 1)!2
+

(t+ x)n(t− x)n−1

n!(n− 1)!
+

(t+ x)n−1(t− x)n

n!(n− 1)!

]
21−2n

yielding the desired result.

Applying Theorem 11 we obtain that vol(Γx,y(t)) = vol(Γx−x,y−x(t)) = vol(Γ0,y−x(t)). In

particular we get that vol(Γx,0(t)) = vol(Γ0,−x(t)). The explicit formula for vol(Γx,y(t)) given

above yields vol(Γ0,−x(t)) = vol(Γ0,x(t)). Making the change of variables y − x → y we get:

u(x, t) =

∫ x+t

x−t
vol(Γ0,x−y(t))dy =

∫ t

−t
vol(Γ0,−y(t))dy =

∫ t

−t
vol(Γ0,y(t))dy = u(0, t).

To compute u(0, t) we make the change of variable y = t(2s − 1) in the integral

∫ t

−t

∞∑
n=0

[
2
(t+ y)n(t− y)n

n!2
+ t

(t+ y)n(t− y)n

(n+ 1)!n!

]
2−2ndy =

4

∞∑
n=0

t2n+1

(2n + 1)!
+ 4

∞∑
n=0

t2n+2

(2n+ 2)!
= 16sinh(t) + 16(cosh(t)− 1) = 4(et − 1).
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5. We have that ∂
∂x

∂
∂yvol(Γ) = vol(Γ).

6. Only points (x, y) ∈ R
2
≥0 on the segment x + y = t receive an influence from (0, 0)

at time t ≥ 0. Among the points on this segment, the highest influence from (0, 0)

is exerted on the point ( t2 ,
t
2); the volume of the moduli space of directed paths from

(0, 0) along the line of maximal influences is given by

vol(Γ(t, t)) = 2
∞∑
n=0

(
n

�n/2�
)
tn

n!
.

7. The wave of influences u(x, y, t) is given for t > 0 by u(x, y, t) = 2(et − 1).

Proof. Item 1 is clear, and item 2 simply counts the influences that arise, respectively, from the

patterns (1) and (2). Let us show 3. Since k = 2, a pattern (c0, ..., cn) is determined by

its initial value c0. For (x, y) ∈ R
2
>0 we distinguish four cases taking into account the initial

value c0 and the parity of n.

• Patterns (1, 2, ..., 1, 2) and (2, 1, ..., 2, 1) of length 2n, for n ≥ 1, have a contribution

of vol(Δx
n−1) vol(Δ

y
n−1) =

xn−1yn−1

(n−1)!2
to the volume of the moduli space of directed paths.

• The pattern (1, 2, ..., 1, 2, 1) of length 2n + 1, for n ≥ 1, have a contribution of

vol(Δx
n) vol(Δ

y
n−1) =

xnyn−1

n!(n−1)! to the volume of the moduli space of directed paths.

• The pattern (2, 1, ..., 2, 1, 2) of length 2n + 1, for n ≥ 1, have a contribution of

vol(Δx
n−1) vol(Δ

y
n) =

xn−1yn

(n−1)!n! to the volume of the moduli space of directed paths.

Putting together the three summands we obtain that

vol(Γ(x, y)) =
∞∑
n=1

(
2
xn−1yn−1

(n− 1)!2
+

xnyn−1

n!(n− 1)!
+

xn−1yn

(n− 1)!n!

)
,

an expression equivalent to our desired result after a change of variables. Clearly, vol(Γ(x, y))

is symmetric in x and y, thus item 4 follows.

Item 5 follows from item 3 and Lemma 20. Item 6 is a particular case of item 5. Let us show

item 7. Let voln(Γ(x, y)) be the n-th coefficient in the series expansion of vol(Γ(x, y)) from

item 3. The points influenced by (0, 0) at time t are of the form (s, t− s) with 0 < s < t.

Thus:

voln(Γ(s, t− s)) = (st− s2)n−1
( 2

(n − 1)!2
+

t

(n− 1)!n!

)
.

Therefore ∂
∂svoln(Γ(s, t−s)) = (n−1)(st−s2)n−2(t−2s)

(
2

(n−1)!2
+ t

(n−1)!n!

)
. The sign of this

expression is determined by the sign of (t − 2s), as the other factors are positive. Thus the
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volume of the moduli space of directed paths from (0, 0) exerted on time t achieves a global

maximum at the point ( t2 ,
t
2), and we have that vol(Γ(t, t)) = 2

∑∞
n=0

(
t2n

n!2
+ t2n+1

(n+1)!n!

)
=

2

∞∑
n=0

((2n
n

)
t2n

(2n)!
+

(
2n+ 1

n

)
t2n+1

(2n + 1)!

)
= 2

∞∑
n=0

(
n

�n/2�
)
tn

n!
.

Item 8. By translation invariance the wave of influence is independent of x, y. Thus we have

that

u(x, y, t) = u(0, 0, t) =

∫ t

0
vol(Γ(−s,s−t),(0,0)(t))ds =

∫ t

0
vol(Γ(0,0),(s,t−s)(t))ds =

∫ t

0
Γ(s, t− s)ds =

∞∑
n=0

∫ t

0

(
2
sn(t− s)n

n!2
+

sn+1(t− s)n

(n+ 1)!n!
+

sn(t− s)n+1

n!(n+ 1)!

)
ds =

2
∞∑
n=0

t2n+1

(2n+ 1)!
+ 2

∞∑
n=0

t2n+2

(2n+ 2)!
= 2(sinh(t) + cosh(t)− 1) = 2(et − 1).

Next we consider the moduli spaces of directed paths on the torus T 2 = S1 × S1. We use

coordinates (x, y) ∈ R
2 representing the point (e2πix, e2πiy) ∈ T 2. Consider the vector fields

on T 2 given in local coordinates by ∂
∂x and ∂

∂y . The moduli space of directed paths on the

torus T 2 from (1, 1) to (e2πix, e2πiy) exerted in time t > 0 is denoted by Γ(e2πix, e2πiy, t).

Recall that D(e2πix, e2πiy, t) is the set of one-direction paths.

Theorem 22. Consider the directed manifold (T 2, ∂
∂x ,

∂
∂y ).

1. For x, y ∈ (0, 1) we have that vol(D(e2πix, e2πiy, t)) = 0.

2. For x ∈ (0, 1] we have that vol(D(e2πix, 1, t)) = vol(D(1, e2πix, t)) =
∑∞

m=0 δ(t, x+m).

3. For (x, y) ∈ (0, 1)2, the moduli space Γ(e2πix, e2πiy , t) of directed paths from (1, 1) to

(e2πix, e2πiy) is empty unless t = x+ y +m for some m ≥ 0, and in the latter case we

have that: vol(Γ(e2πix, e2πiy, x+ y +m)) is given by

∑
k+l=m

∞∑
n=0

(
2
(x+ k)n(y + l)n

n!2
+ (x+ y + k + l)

(x+ k)n(y + l)n

(n+ 1)!n!

)
.

4. vol(Γ(e2πix, e2πiy , x+ y +m)) is a symmetric function in x and y.

Proof. We can compute indirect influences on the torus as sums of indirect influences on the

plane, indeed we have that vol(Γ(e2πix, e2πiy , x+ y+m)) =
∑

k+l=m vol(Γ(x+ k, y + l, x+ y+

m)) =

∑
k+l=m

∞∑
n=0

(
2
(x+ k)n(y + l)n

n!2
+

(x+ k)n+1(y + l)n

(n + 1)!n!
+

(x+ k)n(y + l)n+1

n!(n+ 1)!

)
.
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6.3 Higher Dimensions

Let us first introduce a few combinatorial notions. Given integers n1, . . . , nk ∈ N>0 we

let Shk(n1, . . . , nk) be the set of shuffles of n1 + · · · + nk cards divided into k blocks of

cardinalities n1, . . . , nk. Recall that a shuffle is a bijection α from the set [1, n1+ · · ·+nk] �
[1, n1]�· · ·�[1, nk] to itself such that if i < j ∈ [1, ns], then α(i) < α(j) ∈ [1, n1+· · ·+nk].

When we shuffle a deck of cards split in several blocks, we intertwine the cards in the various

blocks, without distorting the order on each block. We say that a shuffle is perfect if no

contiguous cards within a block remain contiguous after shuffling, i.e. a shuffle α is called

perfect if for i, i + 1 ∈ [1, ns] we have that α(i) + 1 < α(i + 1) ∈ [1, n1 + · · · + nk].

Let PShk(n1, . . . , nk) ⊆ Shk(n1, . . . , nk) be the set of perfect shuffles, and pshk be the

corresponding exponential generating series given by

pshk(x1, . . . , xk) =
∑

n1,...,nk∈N>0

|PShk(n1, . . . , nk)|
xn1
1 · · · xnk

k

n1! · · · nk!
.

A subset A ⊆ [m] is called sparse if it does not contain consecutive elements. Let Sk[m]

be the set of all sparse subsets of [m] of cardinality k. Let p(m,k) count the numerical

partitions of m in k positive summands.

Lemma 23. For 1 ≤ k < m ∈ N, we have that |Sk[m]| = p(m− k, k− 1) + 2p(m− k, k) +

p(m− k, k + 1). For n1, . . . , nk ∈ N>0, then |PShk(n1, . . . , nk)| counts ordered partitions of

n1 + . . . + nk with sparse blocks of cardinalities n1, . . . , nk.

Consider the map | | : C(n, k) −→ N
k, sending a pattern c ∈ C(n, k) to its content

multi-set given by the sequence |c| ∈ N
k such that |c|i = |c−1(i)|. The support of a pattern

c is the set s(c) ⊆ [k] with i ∈ s(c) if and only if |c|i �= 0.

Lemma 24. Fix (n1, . . . , nk) ∈ N
k
>0. Then

∣∣{c ∈ C(n, k) | |c| = (n1, ..., nk)}
∣∣ =

∣∣PShk(n1, . . . , nk)
∣∣.

Consider the directed manifold (Rk, ∂
∂x1

, . . . , ∂
∂xk

). The moduli space of directed paths

from (0, . . . , 0) to (x1, . . . , xk) is denoted by Γ(x1, . . . , xk). Such paths can only happen at

time t = x1 + · · ·+ xk.

Theorem 25. Consider the directed manifold (Rk, ∂
∂x1

, . . . , ∂
∂xk

).

1. There are no directed paths from (0, . . . , 0) to any point (x1, . . . , xk) /∈ R
k
≥0.

2. vol(D(0, . . . , 0, x
i↑
, 0, . . . , 0) = 1, for x ∈ R≥0 and i ∈ [k].

3. For (x1, . . . , xk) ∈ R
k
≥0, with at least two positive entries, the moduli space Γ(x1, . . . , xk)

of directed paths from (0, . . . , 0) to (x1, . . . , xk) has volume

vol(Γ(x1, . . . , xk)) =
∑
A⊆[k]
|A|≥2

∂|A|

∂xA
psh|A|(xA).
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4. vol(Γ(x1, . . . , xk)) is a symmetric function in the variables x1, . . . , xk.

Proof. Properties 1 and 2 are clear, let us prove 3. Recall that

vol(Γ(x1, . . . , xk)) =

∞∑
n=1

∑
c∈C(n,k)

vol(Γc(x1, . . . , xk)),

where the volume of the moduli space of directed paths with a fix pattern c ∈ C(n, k) is given

by

vol(Γc(x1, . . . , xk)) =
∏

j∈s(c)

x
|c|j−1
j

(|c|j − 1)!
.

Thus a pattern c ∈ C(n, k) with support s(c) = A ⊆ [k], with |A| ≥ 2, contributes to

the monomial
x
n1
1 ···x

nk
k

n1!···nk!
, if and only if |c|i = ni + 1 for i ∈ A, and ni = 0 for i /∈ A.

Therefore the total contribution of the patterns with support A to this monomial is given

by |PSh|A|(nA + 1)|∏j∈A

x
nj
j

nj !
, where nA is the vector obtained from the tuple (n1, ..., nk)

by erasing the zero entries, and nA+1 is the vector obtain from nA by adding 1 to each entry.

Summing over the nj, and setting xA = (xj)j∈A, we obtain that the total contribution of

the patterns with support A to the volume of the moduli space of direct ed paths is given by

∑
nj∈N; j∈A

|PSh|A|(nA + 1)|
∏
j∈A

x
nj

j

nj!
=

∂|A|

∂xA
psh|A|(xA).

Adding over all possible supports A ⊆ [k], with |A| ≥ 2, we obtain the desired result.

4. For a permutation σ ∈ Sn we have that vol(Γ(xσ(1), . . . , xσ(k)) is given by

∑
A⊆[k]
|A|≥2

∂|σA|

∂xσA
psh|σA|(xσA) =

∑
A⊆[k]
|A|≥2

∂|A|

∂xA
psh|A|(xA) = vol(Γ(x1, . . . , xk)).

Next we consider directed paths on the k-dimensional torus T k = S1 × · · · × S1. We

use coordinates (x1, . . . , xk) ∈ R
k representing the point (e2πix1 , . . . , e2πixk) ∈ T k. Consider

the constant vector fields on T k given in local coordinates by ∂
∂x1

, · · · , ∂
∂xk

. The moduli

space of directed paths on T k from (1, ..., 1) to (e2πix1 , . . . , e2πixk) exerted in time t > 0

is denoted by Γ(e2πix1 , . . . , e2πixk , t). Recall that the set of one-direction paths is denoted by

D(e2πix1 , . . . , e2πixk , t).
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Theorem 26. Consider the directed manifold (T k, ∂
∂x1

, · · · , ∂
∂xk

).

1. For x1, . . . , xk ∈ (0, 1], with at least two entries in (0, 1), we have vol(D(e2πix1 , . . . , e2πixk , t)) =

0.

2. For x ∈ (0, 1] we have that:

vol(D(1, . . . , e2πix
i↑

, . . . , 1, t)) =

∞∑
m=0

δ(t, xi +m).

3. For x1, . . . , xk ∈ (0, 1], with at least two entries in (0, 1), the moduli space Γ(e2πix1 , . . . , e2πixk , t)

of directed paths from (1, . . . , 1) to (e2πix1 , . . . , e2πixk) is empty unless t = x1+ · · ·+xk+m

for some m ≥ 0, and in the latter case we have that:

vol(Γ(e2πix1 , . . . , e2πixk , x1 + · · ·+ xk +m)) =
∑

m1+...+mk=m

∑
A⊆[d]
|A|≥2

∂|A|

∂xA
psh|A|(xA + mA).

4. vol(Γ(e2πix1 , . . . , e2πixk , x1 + · · · + xk +m)) is a symmetric function on x1, . . . , xk.
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